[arXiv] BigDataFr recommends: Strategies for Big Data Analytics through Lambda Architectures in Volatile Environments

BigDataFr recommends: Strategies for Big Data Analytics through Lambda Architectures in Volatile Environments […] Expectations regarding the future growth of Internet of Things (IoT)-related technologies are high. These expectations require the realization of a sustainable general purpose application framework that is capable to handle these kinds of environments with their complexity in terms of heterogeneity […]

[Datasciencecentral] BigDataFr recommends: More on Fully Automated Machine Learning

BigDataFr recommends: More on Fully Automated Machine Learning […] Recently we’ve written a series of articles on Automated Machine Learning (AML) which are platforms or packages designed to take over the most repetitive elements of preparing predictive models.  Typically these cover cleaning, preprocessing, some feature engineering, feature selection, and then model creation using one or […]

[arXiv – Ariane Carrance] BigDataFr recommends: Uniform random colored complexes

BigDataFr recommends: Uniform random colored complexes […] We present here random distributions on (D+1)-edge-colored, bipartite graphs with a fixed number of vertices 2p. These graphs are dual to D-dimensional orientable colored complexes. We investigate the behavior of quantities related to those random graphs, such as their number of connected components or the number of vertices […]

[Analyticsvidhya] BigDataFr recommends: 10 Advanced Deep Learning Architectures Data Scientists Should Know!

BigDataFr recommends: 10 Advanced Deep Learning Architectures Data Scientists Should Know! Introduction […] It is becoming very hard to stay up to date with recent advancements happening in deep learning. Hardly a day goes by without a new innovation or a new application of deep learning coming by. However, most of these advancements are hidden […]

[arXiv] BigDataFr recommends: Bayesian Nonlinear Support Vector Machines for Big Data

BigDataFr recommends: Bayesian Nonlinear Support Vector Machines for Big Data […] We propose a fast inference method for Bayesian nonlinear support vector machines that leverages stochastic variational inference and inducing points. Our experiments show that the proposed method is faster than competing Bayesian approaches and scales easily to millions of data points. It provides additional […]

[Datasciencecentral] BigDataFr recommends: Better Banking with help of Analytics and Machine learning

BigDataFr recommends: Better Banking with help of Analytics and Machine learning […] In 2015, I was working at Diebold where we build ATM machine hardware and software and complete ecosystem around the ATM. When we talk about ATM machine, it is a collection of very complex small hardware which collectively performs tasks. And typically, when […]

[arXiv] BigDataFr recommends: Big Data vs. complex physical models: a scalable inference algorithm

BigDataFr recommends: Big Data vs. complex physical models: a scalable inference algorithm […] The data torrent unleashed by current and upcoming instruments requires scalable analysis methods. Machine Learning approaches scale well. However, separating the instrument measurement from the physical effects of interest, dealing with variable errors, and deriving parameter uncertainties is usually an after-thought. Classic […]